FINAL EXAM IN MATHEMATICS

Name:	Class:
-------	--------

The following rules apply:

- The duration of the exam is 4 hours.
- Additional Aid: English-German dictionary
- The solution process for all problems must be written down clearly and completely. Show your use of the CAS calculator¹. The memory of the calculator has to be cleared before the exam.
- The exam consists of two parts:
 - Part 1: Solve problems 1 to 3 with the aid of the mathematics formulary² and a simple calculator³.

Once you are finished solving this part, place all corresponding pages (including the exercise sheets) into the envelope provided. Seal the envelope and hand it in to the supervisor. (Attention: Only the pages in the sealed envelope will be considered for the assessment of part 1!)

- Part 2: Once you hand in part 1 in a sealed envelope, you will receive your CAS calculator.
 Solve problems 4 to 7 with the aid of your CAS calculator and the mathematics formulary.
- The final grade is calculated as follows:

Final grade =
$$\frac{5 \cdot \text{``achieved points''}}{42} + 1 \text{ (rounded to half a mark)} =$$

We wish you much success!

Problem	1	2	3	4	5	6	7	Total
Possible Points	4.5	7.5	8	9	5	5.5	10	49.5
Achieved Points								

 $^{^1\}mathrm{TI}\text{-Nspire}$ CX-T II CAS

²Adrian Wetzel. Formelsammlung Mathematik. 9th ed. 2021. ISBN: 978-3-9523907-1-9.

 $^{^3\}mathrm{TI}\text{-}30$ ECO RS, TI-30X A, TI-30Xa Solar oder TI-30X IIS

Name: Class:

Part 1: Without CAS calculator

Figure 1: Without CAS calculator⁴

The problems in this part have to be solved without the CAS calculator. The aids allowed in this part of the exam are the mathematics formulary⁵ and a simple calculator⁶.

 $^{^4}$ Wikimedia Commons. TI-Nspire CX-T CAS II. Creative Commons Attribution-Share Alike 4.0 International. URL: https://commons.wikimedia.org/wiki/File:TI-Nspire_CX-T_CAS_II.jpg (visited on 02/05/2024)

 $^{^5}$ Adrian Wetzel. Mathematics formulary. 4th ed. 2021. ISBN: 978-3-9523907-2-6.

 $^{^6\}mathrm{TI}\text{-}30$ ECO RS, TI-30X A, TI-30X
a Solar oder TI-30X IIS

Problem 1 (4.5 P)

Given are the three vectors:

$$\vec{a} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} 2 \\ 1 \\ z \end{pmatrix} \text{ and } \vec{c} = \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}$$

- (a) Calculate the length of \vec{a} . (1P)
- (b) The vectors \vec{a} and \vec{b} are perpendicular. Calculate the component z. (1.5 P)
- (c) Calculate the area of the parallelogram spanned by the vectors \vec{a} and \vec{c} . (2 P)

Problem 2 (7.5 P)

Of lines g and h we know the following:

- line g has direction vector $\begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$ and passes through the origin.
- line h has direction vector $\begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}$ and intersects line g in point $P = (4, y_P, z_P)$.
- (a) Determine a parametric equation of line g. (1P)
- (b) Determine a parametric equation of line h. (1 P)
- (c) The lines g and h span a plane. Calculate the distance between this plane and point Q = (0, 2, 1).

 (3 P)
- (d) Give an example of a line j that is parallel to h and skew to line g. Show mathematically that j and g are indeed skew. (2.5 P)

Problem 3 (8 P)

For the next 16 statements you need to decide if the statement is TRUE or FALSE.

This problem is graded as follows:

- \bullet Correct answer: $+0.5\,\mathrm{P}$
- The first four incorrect answers: 0 P
- Further incorrect answers: -0.5 P
- No answer: 0 P

Minimum possible points: 0 P.

- (a) Vector Geometry
 - (i) The line

$$g: \vec{r} = \begin{pmatrix} 2024 \\ 2024 \\ 2024 \end{pmatrix} + t \cdot \begin{pmatrix} 2024 \\ 0 \\ 2024 \end{pmatrix}$$

true \Box false \Box (0.5 P)

intersects the plane with the equation

$$x + 2024 \cdot y - z = 0.$$

(ii) For two vectors \overrightarrow{v} and \overrightarrow{w} in in three dimensional space the following is always true:

 $\vec{v} \cdot (\vec{v} \times \vec{w}) = 0.$

true \square false \square

 $(0.5\,P)$

(iii) From $\vec{v} \cdot \vec{w} = |\vec{v}| \cdot |\vec{w}|$ it follows that $|\vec{v} + \vec{w}| = |\vec{v}| + |\vec{w}|$.

true \square false \square

 $(0.5 \, P)$

(b) Probability and Combinatorics

 $\binom{1000}{500} = \frac{1000!}{(500!)^2}$

true \Box false \Box (0.5 P)

(ii)

 $99! = \frac{100!}{2}$

true \square

false \square

 $(0.5\,P)$

 $(0.5\,P)$

"heads" in 8 throws of a fair coin is $\binom{8}{3}$.

(iii) The number of possibilities to receive exactly three consecutive

true \Box false \Box

(iv) A die is thrown 2024 times. The probability of never throwing a 🗓 is strictly larger than 0.

true \square

 $false \square$

 $(0.5\,\mathrm{P})$

true \square

 $false \ \Box$

(0.5 P)

(c) Calculus

(iii) The shaded area in Figure 2 can be calculated by

$$\left| \int_{-a}^{a} f(x) \, \mathrm{d}x \right|.$$

Figure 2: graph of function f and shaded area

- (iv) The function $f(x) = -6 x^2$ has more than one zero. true \Box false \Box (0.5 P)
- (v) The graph of a polynomial function always has more extrema than points of inflection. true \Box false \Box (0.5 P)
- (vi) The graph of a polynomial function of degree five can have four points of inflection. true \Box false \Box (0.5 P)
- (vii) There is a function F that is the antiderivative of f(x) = x as well as of g(x) = x + 1. true \Box false \Box (0.5 P)
- (viii) If $f(x) = \sin(2 \cdot x)$, then $f'(5 \cdot \pi) < 0$. true \Box false \Box (0.5 P)
- (ix) The 2024th derivative of $f(x) = \sin(2 \cdot x)$ is $2^{2024} \cdot f(x)$. true \Box false \Box (0.5 P)

Name:	Class:
-------	--------

Part 2: With CAS calculator

Figure 3: With CAS calculator⁷

Once you hand in part 1 in a sealed envelope you will receive your CAS calculator. Solve problems 4 to 7 with the aid of your CAS calculator⁸ and the mathematics formulary.

⁷Wikimedia Commons. *TI-Nspire CX-T CAS II*.. Creative Commons Attribution-Share Alike 4.0 International. URL: https://commons.wikimedia.org/wiki/File:TI-Nspire_CX-T_CAS_II.jpg (visited on 02/05/2024)

8TI Noming CX T. H. CAS

Problem 4 (9P)

Circle K passes through the origin O = (0, 0) and its centre M is M = (4, 3).

The graph of the parabola

$$p(x) = a \cdot x^2 + b \cdot x + c$$

intersects the circle in the origin as well as in point $P = (x_P, 6)$. P is a maximum of the graph of p.

- (a) Determine the equation of line g through points O and M. (0.5 P)
- (b) Determine the equation of p. (3 P)

Hint: If you cannot solve (b) continue with the function

$$p(x) = -\frac{3}{32} \cdot x^2 + \frac{3}{2} \cdot x$$

(c) Determine the equation of the tangent t to the graph of p that is parallel to line g. (2.5 P)

(d) Calculate the shaded area in Figure 4. (3P)

Figure 4: area

Problem 5 (5P)

Starting in point P = (0, 2) an infinite sequence of lines is drawn, as shown in Figure 5. Each line is perpendicular to the previous line. The lengths of the lines form a geometric sequence.

Figure 5: sketch to Problem 5

- (a) Calculate the x-coordinates of points P_1 and P_2 . (1.5 P)
- (b) Calculate the coordinates of the "ending point" E. (3.5 P)

Problem 6 (5.5 P)

For his final project as a chocolatier the apprentice Julian wants to create a very special new praline:

The confectionary is to have the form of straight pyramid with a quadratic base. What makes the praline special is the icing with gold powder that covers the visible surface of the delicacy. The praline is to have a volume of $12 \, \mathrm{cm}^3$. The special gold icing is so thin that it does not need to be taken into consideration when calculating the volume.

However, the cost of the icing is at 1.00 $\frac{\text{CHF}}{\text{cm}^2}$ rather pricey. For the underside of the pyramid a similar icing with less gold powder is used. It costs 0.80 $\frac{\text{CHF}}{\text{cm}^2}$.

What height of the pyramid should Julian choose if the praline is to be produced as cheaply as possible?

(5.5 P)

The proof of minimum is not necessary.

Problem 7 (10 P)

A gambling machine has three identical wheels. Each of these wheels only contains the four symbols \bigstar , \bigstar , \spadesuit and \bullet . If you toss in a coin the wheels start to turn and then, independently from one another, stop at random . When still, each wheel shows exactly one image.

Figure 6: wheels

- To play you pay 1 CHF.
- If exactly two wheels show the same symbol, the payout is 2 CHF.
- If all three wheels show the same symbol, the payout differs:
 - If the wheels show three \bigstar , the payout is 20 CHF.
 - If the wheels show three \maltese , the payout is 10 CHF.
 - If the wheels show three \blacklozenge or three \bullet , the payout is 5 CHF.
- If the wheels show three different symbols, you lose your stake.
- (a) How many possibilities are there for arranging the symbols if the order matters? (1P)
- (b) How many possibilities are there for arranging the symbols if the order does not matter? (1.5 P)
- (c) How many possibilities are there for arranging the symbols if the order does not matter and one of the symbols has to appear exactly twice? (1P)
- (d) What is the probability of losing a game? (1P)
- (e) What is the probability that a player wins at least once in five games? (1 P)
- (f) What is the probability that a player wins 20 CHF exactly twice and loses the other games? (2 P)
- (g) What kind of win or loss can a player expect in this game? (2.5 P)

